

AccApp'07: the Eighth International Topical <u>Meeting on Nuclear</u> <u>Applications and Utilization of Accelerators</u>

July 29 to August 2, 2007, Pocatello, Idaho

talk in session ,,accelerator technology: instrumentation and control"

in proceedings: pp. 152-159

Beam Diagnostics for the Proton Therapy Facility PROSCAN

R. Dölling, S. Lin, P.-A. Duperrex, G. Gamma, B. Keil

- proton therapy / the PROSCAN facility
- overview diagnostics
- monitors (examples)
- electronics
- measurement/interlock options
- system checks
- nozzle diagnostics

Proton therapy

PAUL SCHERRER INSTITUT

The PROSCAN facility

Insertable multi-strip ionisation chamber profile monitor

amplification by a factor 46 ... 117 @70 ... 250 MeV

vertical profile 68 strips (front side)

horizontal profile 68 strips (other side)

combined to 16+16 or 32+32 strips strip <u>pitch selectable</u> 0.5 - 4 mm

adaptation --> less error of beam width

center ceramic plate: thick-film pattern

37 installed (thick --> <u>destructive</u> --> only 1 used at a time)

information for

- beam alignment
- transport calculations
- beam current

mechanical tolerances to survey marks on outer vacuum box <0.2 mm

the detector in an ambient-air-filled box can be moved into the beam

Insertable multi-strip ionisation chamber profile monitor

amplification by a factor 46 ... 117 @70 ... 250 MeV

vertical profile 68 strips (front side)

horizontal profile 68 strips (other side)

combined to 16+16 or 32+32 strips strip pitch selectable 0.5 - 4 mm

adaptation --> less error of beam width

center ceramic plate: thick-film pattern

37 installed (thick --> <u>destructive</u> --> only 1 used at a time)

information for

- beam alignment
- transport calculations
- beam current

mechanical tolerances to survey marks on outer vacuum box <0.2 mm

thin permanent ionisation chamber profile monitor

simulation

10000

100 nA

560 nA

1000

6 µm titanium foils soldered to thick-film coated ceramic frames

Ionisation chamber position and halo monitors

PAUL SCHERRER INSTITUT

Multi-Leaf-Faraday-Cups measure beam energy

- the beam energy distribution is determined from the measured range distribution
- the beam is stopped in a stack of 64 copper sheets of varying thickness
- the copper sheets are separated by Kapton foils
- the 64 currents (>10 pA) are measured
- MLFC is mounted on a compressed-air actuator
- in vacuum, no active cooling --> max. 200 kJ/day
- two variants: for OPTIS2: 65 86 (- 252) MeV,

for gantries: 68 - 252 MeV

• a refined evaluation is needed for an accurate range determination

Cables and Electronics (MCS)

R. Dölling, AccApp'07

input current [nA]

VME PMC carrier board

32 channel logarithmic amplifier LogIV32

VME PMC carrier board

4x4 channel logarithmic amplifier LogIV4x4

synchronous sampling 5 kHz

Measurement capabilities of LogIV

- in module available (5 kHz update) (requestable by MCS)
 - individual signal currents*
 - **series** of profiles (=all currents)**
- in module derived from simultaneously sampled currents
 - sum
 - maximum
 - center position/width (profile)
 - hor./vert. position (halo-mon.)
 - current ratios
 - current integral

(only LogIV32, only LogIV4x4)

each signal is doubly available: filtered with configurable low-pass filters A, B

- → in MCS derived (on user request) energy-dependent conversion factors
 - beam currents

- beam current

 \rightarrow every profile monitor is a current

and transmission monitor too

- beam current ratios (transmission)
- beam current integral

* user request to MCS, MCS individually asks module via VME \rightarrow readings not simultaneous * * up to 4095 profiles (each simultaneously sampled) with n * 0.2 ms separation $(n=1...\sim\infty)$ (trigger + en-bloc readout requestable by MCS) Interlocks in the MCS check the beam and the detectors

- *from LogIV* (latency few ms, filter configurable)
 - beam current or transmission too high/low
 - beam current integral too high/low
 - beam position/width wrong
 - losses too high/low
 - detector high-voltage readback too low
 - output of twin-detectors too different
 - module error
- IL limits and IL activation configurable in the modules
- IL activation configurable in the MCS
- IL not depending on machine-tune or user mode (possible)
- no fast evaluation of signals arriving distributed to several modules (possible)

- from high-voltage modules (1 ms)
 - detector voltage too low
 - supply current too high (short)
 - module error

Interlocks in the MCS check the beam and the detectors

R. Dölling, AccApp'07

- *from LogIV* (latency few ms, filter configurable)
 - beam current or transmission too high/low
 - beam current integral too high/low
 - beam position/width wrong
 - losses too high/low
 - detector high-voltage readback too low
 - output of twin-detectors too different
 - module error
- IL limits and IL activation configurable in the modules
- IL activation configurable in the MCS
- IL not depending on machine-tune or user mode (possible)
- no fast evaluation of signals arriving distributed to several modules (possible)

this resembles the MCS-IL-system at PSI's MW-beam lines *there:* prevents the beam from melting beam pipe/components *here:* enforces stability and reproducibility of the beam

- from high-voltage modules (1 ms)
 - detector voltage too low
 - supply current too high (short)
 - module error

a <u>separate</u> system with different electronics

and capabilities

PaSS

MCS

the Patient Safety System alone has to guarantee the patients safety

Diagnostics system checks in the MCS

Suspended

0.5"

15h23'36"

MMAF

2.00

0.00

MMAP12Y.II01:2

0.5"

0.01 nA

0.5"

tendis <2:

0.00

600.00 V

0.5"

• permanent (by Interlocks)

- self check electronic modules (watch dog)
- consistency of twin-detectors
- high voltage read-back of some IC & SEM
- high-voltage supply currents of all IC & SEM (short-circuit)

• periodically (~1/day) without beam (by MCS-routines) (not ready at present)

- high-voltage supply currents of all IC & SEM (leakage current)
- influence test of all IC & SEM & MLFC (complete systems):

Nozzle diagnostics for dosimetry (Gantry 1)

- 1. planar IC, defines the spot dose (UCS), collection time 90 µs, 23 cm * 3 cm, 20 µm aluminised Mylar foils, ambient air
- planar IC, verifies the spot dose after each spot (PaSS), 2. microphonics! collection time 350 µs
- Frisch-grid monitor, verifies the spot dose after each spot (PaSS), 3. no microphonics, position/current dependency, collection time ~10 µs, nitrogen
- 4. two planar multistrip-IC, check hor.+vert. beam position for each spot (PaSS, $\sigma \sim 0.1$ mm), strip pitch 4.4 mm, 25 µm aluminised Kapton/Mylar foils

(additional beam-position check by Hall probes in sweeper magnet and last bending magnet, PaSS, $\sigma \sim 1$ mm)

Nozzle diagnostics for dosimetry (Gantry 1)

- 1. planar IC, defines the spot collection time 90 µs, 23 cm * 3
- 2. planar IC, verifies the spor microphonics! collection time 3
- 3. Frisch-grid monitor, verifi no microphonics, position/curre

 4. two planar multistrip-IC, c strip pitch 4.4 mm, 25 μm alum
(additional beam-position c sweeper magnet and last b

3.

position deviation [mm] planned vs. verified (50 spots shown) other transversal direction 1.5 1 0.5 XXXXXXX BR. Com 0 -0.5 -1 -1.5 -2 -1.5 1.5 sweep direction 2. 4. -4500 V +2000 V +2000 V +2000 V

- an ensemble of diagnostics has been tailored to the needs of the proton therapy at PSI
- it is used extensively for commissioning and set-up
- it worked successfully for patient treatment