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Stability Requirements I

General statement of users:

Source fluctuations should be one order of magnitude below
the resolution and detectivity of experimental stations.

Experiments have achieved:

« photon energy resolution of 10 to 10
* detectivity resp. S/N-ratios on the sample of 107 to 10

This translates into reqiurements for:

Angular Stability: Position Stability:
(assuming planar crystal monochromator) (assuming gaussian beamshapes)
Photon Intensity Variation vs. Beam Displacement
AE A @ 10 , f'or_'I_)iffer‘ervlt‘ Aperturg Sizgs .
Bragg’s law: ph - === ——-=
10

®p

ph

with Bragg angle ©®g ~5°-45°
(90 - 800 mrad)

Photon Intensity Variation dI/1
)
)

Beam Displacement dy/c (%)

AOpeam < 1 prad

AXbeam , Aybeam <oc/10

for low € and low beta machines: <1 pm
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Stability Requirements IT

Typical integration times of experiments

e >>100s ....... e.g.: inelastic x-ray scattering

e 0.1s-100s ... e.g.: protein cristallography (PX)
u-tomography (CMT)

e <0ds ......... e.g.: time resolved EXAFS (QEXAFYS)
time resolved x-ray diffraction (XRD)
dichroism spectroscopy

Experiment integration time >> orbit fluctuations:

Beam motions do not cause noise,
:> but experiments observe “blow-up”

of effective emittance €, and a

corresponding reduction of flux.

Experiment integration time ~ orbit fluctuations:

::> Beam motions add directly noise
to experiment.

Experiment integration time << orbit fluctuations:

Poor reproducibility of photon beam position.
::> (Dynamic) re-alignment of storage ring

components or experimental apparatus

may represent a cure.
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Noise Sources at SR Facilities I

Long term motions (weeks - years)

e ground settlements
 seasonal ground motions

Medium term motions (minutes - days)

e filling pattern and machine refills
diurnal temperature

crane motion

gravitational earth tides

RF drifts

(> 1 mm)
(<1 mm)

(<500 pm)
(<100 pm)
(< 100 pm)
(<50 um)
(<10 pm)

Short term motions (millisecond - seconds)

e ID gap changes

ID polarization switching
ground vibrations, traffic...
cooling water

injector operation

(< 100 pm)
(< 100 pm)
(<10 pm)
(<10 pm)
(<10 pm)

High frequency motions (sub-milliseconds)

 single and multi-bunch instabilities (<100 pm)

* synchrotron oscillations (<100 pm)

e pulse power sources (<10 um)
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Noise Sources at SR Facilities IT

APS Noise Spectrum without FB  (courtesy of Glenn Decker)
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Long term beam motions can be reduced by...

* Frequent (dynamic) re-alignment campaigns
 Temperature and beam current stabilization

Medium and short term beam motions can be reduced by...
* Careful mechanial and electrical engineering
* “Top-up” operation of storage ring
* Global and/or local position feedback systems

High frequency beam motions can be reduced by. ..

* Multi-bunch feedback systems
* 3rd harmonic cavities
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Global Position Feedback Architecture

0, +80 =R« (uy + Su)

Storage

gps 8> 84 Ring

Anti Orbit
Aliasing o
Filter

M rf and/or photon-BPMs measure orbit motions uy + du

e filtering of rf-signals prevents aliasing of higher frequencies
into the digital part of the loop
- analog and digital noise is introduced through BPM electronics

Dedicated network transfers data to processing station(s)

PID-controller requlates feedback loop performance

* P-gain: provides efficient step response
* I-gain: provides effective suppression of low frequency noise
* D-gain: provides loop stability near high frequency cut-off

Correction algorithm determines N correction kicks ® + 50

* through direct response matrix inversion or application of SVD

Corrector Magnets, Power Supplies and Vacuum Chamber

 apply corrections to the beam
* introduce analog or digital noise

« act as first order low-pass filters (through eddy currents)
. J

Volker Schloftt EPAC02
Paris, 03.-07.06.2002




—m(;— =] Jm PAUL SCHERRER INSTITUT SLS

Global Position Feedback in SR Sources

Key Components I: rf-BPMs

General Requirements (for < 100 Hz, sub-um position feedback)

* bandwidth / sampling rate some kHz o
 resolution / noise figure < 0.3 um (< 15 nm/J/Hz)
(within FB bandwidth)
* long term stability ( typ. hours) 1 pm
* reliability high
RF BPMs

* Since capacitive pick ups are part of SR vacuum chamber, the
mechanical BPM positions need to be stable to a sub-um level

Solutions:
=> stiff and mechanically de-coupled supports (SPEAR 3, ELETTRA)

=> monitoring of mechanical BPM movements (SLS, ELETTRA)

e Multiple choices of electronics

multiplexed systems parallel systems
bandwidth * limited / aliasing problems high
resolution ** g0ood (still sufficient) good (still sufficient)
linearity excellent excellent
current dep.*** low limited
dynamic range large large

Remarks:

=> kHz multiplexing frequencies may turn longitudinal beam
oscillations through aliasing into noise in the correction BW.

=> reliability needs to be improved by feature like electronics
self tests and data validity checks

=> resolutions may be improved by direct digitization of
rf-signals (300 - 500 MHz) with fast ADCs.

=> current dependency represents no concern with
“top-up” operation of storage ring.
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Key Components II: Photon-BPMs

Photon BPMs

* Pick ups are part of the front end sensing the photon beam
by using the photoemission effect

courtesy of Karsten Holldack (BESSY)
aimmj= 5§ 5 7 4 B

MPW dipole MPW undulator undulator side view
upstream downstream  upstream downstream of blades

Fig. 2 Blade geometries for staggered pair monitors { SPMSs) for dipoles and multipole wigglers as well as
XBPMs in undulator frontends. (light shading:dipole and wiggler fans; dark shading:undulator radiation).

=> monitorheads are stiff and cooled

=> no intensity and/or bunch pattern dependency
=> higher resolution than rf-BPMs

=> bandwidth limitation of electronics to < 2kHz

ID photon BPMs need:

=> precise mapping of undulator modes

=> removal of contamination from bending magnet stray
radiation through low-/ bandpass filtering of signals (VUV)
or introduction of ID chicanes (hard x-rays)
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Key Components ITI: Power Supplies, Correctors, Vacuum Chamber

Power Supplies (e.g.: sLs digital PS)

*PS for feedback purposes are usually
operated in the small signal regime

=> providing up to 2 kHz BW
* Sufficient resolution (> 16 bit, 15 ppm)

* Stability:
=> short term (hours) : <1 ppm

ADC Resolution: 50 samples/s (1V offset, 2ppm (20uV) steps)
T T T T T T T T

120

2 =5
LS}

(=)
T

100

N
T

Input value -10000ppm offset [ppm]
Eo [s2] o
Input voltage -1V offset [uV]

(=)
T

'
[\S]

1 | i 1 I i | i -20
0 20 40 60 80 100 120 140 160 180
Time [min]

=> long term (weeks) : <15 ppm

Corrector Magnets and Vacuum Chambers

* Bandwidth limitations through eddy currents:

=> use of low conductivity material and/or
reduced thicknesses of vacuum chambers

e.g.: Al (aps) fc ~ 10 Hz
Cu fc ~ 40 Hz
CuNi (SPEAR 3) fc ~ 120 Hz

2 mm stainless (sLS) fc ~ 120 Hz

* Air core corrector magnets provide high BW
=> relatively high power requirements
=> bulky

* Laminated corrector magnets
=> can be used for static and dynamic corrections

=> laminations < 1 mm thickness provide still
sufficient bandwidth (fc ~ 100 Hz)

* Still moderate BW-limitations since both elements
can be treated as first order low-pass.
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Global FB Simulations
PID Controller

* Gp, Gi, Gd have been optimized for
suppression of typical noise spectra in SR sources

* Transfer functions of SLS FB key components have been supposed

BPM sampling rates: 1 kHz, 2 kHz, 4 kHz o
BPM noise: <1 pm rms (@ 4 kHz), ~16 nm//Hz
PS bandwidth 2 kHz

fc of corr. / vac. chamber 120 Hz

* Loop latency time including data transfer, PID controler and
calculation of corrector kicks was assumed to last one sampling
cycle of BPM system

Bode Plot of SLS Feedback Loop
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Examples of Global Position Feedbacks

APS (courtesy of Glenn Decker)
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ESRF (courtesy of Eric Plouviez)
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Examples of Global Position Feedbacks
SLS: Global Slow Orbit Feedback (SOFB) (see THPR1030)

* SOFB corrects each plane to “"golden orbit” every 3 seconds
- all 72 BPMs and all 144 (72 h./72 v.) correctors are used
- rf-frequency is used to compensate for SR circumference changes

Short term stability (13 hours) at 6S Long term stability (14 days)
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SLS global fast orbit feedback (up to 100 Hz) is under commissioning
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Position Feedback Implementations

SR facility | FB type | Monitors | max. BW | Stability
ALS* G rf-BPMs <100 Hz <1 um
APS GandL | rf & p-BPMs <30 Hz <2 pum

<50 Hz * <1 um*
NSLS G rf-BPMs <200 Hz 0.5 pm
SPEAR 3* G rf-BPMs <200 Hz <1 pum
BESSY * L rf and p-BPMs | <100 Hz <1 um
DELTA G rf-BPMs <1Hz <5 pum
ELETTRA * L rf-BPMs <20 Hz <0.2 um
ESRF G rf-BPMs 100 Hz 0.6 um
MAX-lab G rf-BPMs 1 Hz <3 um
SLS * G rf & p-BPMs 100 Hz <0.5 pum
SRS L p-BPMs 0.03 Hz 1 um
SUPER-ACO G Rf-BPMs <150 Hz <5 um
DIAMOND * G rf-BPMs 100 Hz <1 pum
SOLEIL * G rfand p-BPMs | 100 Hz 0.2 pm
KEK-PF G rf-BPMs 3Hz <5 um
SPRING-8 G rf-BPMs <0.01 Hz <3 um

200 Hz * <1 pum*

* proposed or not yet fully implemented FB systems

Position FB Schemes:

-_local positions feedbacks for each experiment individually
+ combination of (fast) global and (slow) local feedbacks
- combination of fast and slow global feedbacks

- single feedback covers slow and fast corrections as well as
stabilization local and global “golden orbit” disturbances
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Conclusions

* Increasing user requirements for position stability
are only achievable through feedbacks

- A single global position feedback system represents
most effective approach to correct distributed sources
of orbit disturbances as usually found in SR facilities

- Decreasing HW costs should motivate to consider the
implementation of global position FB from the beginning

- "Hard correction” to the “golden orbit” delivers best
results for machine and experiments at the same time

This should be possible if:

e Correctors are not saturating
(DC-corrections through feature like
“"dynamic alignment”)

» BPM systems become more reliable (self-tests...)

- Feedback bandwidth depends strongly on latency time
through the system

- Higher resolution of photon-BPMs should be used
 RF-frequency should be included in global position FB

+ Signals from experimentalists should be made available
to detect sources of beam motion on the samples and tpo
permit active FBs of beamline components (mirrors...)
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