# **Digital BPMs and Orbit Feedback Systems**

T. Schilcher, M. Böge, M. Dehler, B. Keil, P. Pollet, V. Schlott

# Outline

- stability requirements at SLS storage ring
- digital beam position monitors (DBPM)
- SLS global fast orbit feedback system
- SLS multi bunch feedback system
- beam stabilization plans at European XFEL

# **Stability Requirements at SLS**

• Angular stability:

 $\Delta \Theta_{\text{beam}} < 1 \ \mu \text{rad}^*$ \* typical < 10  $\mu$ m at the experiment

• Position stability:

 $\sigma/10$  at Insertion Devices (ID)

- $\rightarrow$  low beta ID: vertical beam size ~10 µm (1% coupling)
- $\rightarrow 1 \, \mu m \, RMS$  in vertical plane
- **suppression** of orbit distortion up to 100 Hz by factor of >5
- fast compensation of orbit distortions due to **ID gap changes**

# **Beam Stability Strategy at the SLS**

• reduce drifts and vibrations as much as possible

(air and water temperature regulation, proper girder design, top-up operation,...)

- reduce well-known noise sources by feed forward (ID gap changes,...)
- suppress remaining noise on e<sup>-</sup> beam by fast orbit feedback
- use all available correctors for fast orbit feedback (no distinction between slow and fast orbit feedback)
  - → lock beam to center of BPMs
  - monitor mechanical movement of BPMs with respect to adjacent quads by encoder system
  - → good feedback systems:

beam stability  $\approx$  BPM stability & resolution

# Why digital BPMs ?

#### • digitize beam position as early as possible to

- simplify RF front end
- minimize non-linearities of analog components (mixers, etc.)
- minimize temperature dependencies & drifts in electronics
- minimize beam current dependence, guarantee high stability and reproducibility of beam position
- reduce number of analog components in processing chain
  - potential to reduce noise sources
- high flexibility in output bandwidth of digital BPM due to programmable filters (+decimation)
  - single pulse, turn-by-turn capability (broadband BPM)
    closed orbit capability (narrow band BPM)
    - choose operating mode for required application (machine studies, orbit feedbacks,...)

# **Digital Beam Position Monitor (DBPM)**



#### **SLS DBPM Specifications and Performance**

| Parameter                                                    | Specification for SLS               | SLS DBPM<br>Performance           |
|--------------------------------------------------------------|-------------------------------------|-----------------------------------|
| RF carrier freq.                                             | 500 MHz                             |                                   |
| IF carrier freq                                              | 36 MHz                              |                                   |
| Dynamic Range                                                | 1-400 mA                            | 1-400 mA                          |
| Beam Current Dependence<br>1-400 mA<br>relative 1 to 5 range | < 100 μm<br>< 5 μm                  | < 100 μm<br>< 30 μm               |
| position measuring radius                                    | 5 mm                                | 5 mm                              |
| resolution*) / BW                                            | < 1 μm @ 2 kHz<br>< 20 μm @ 0.5 MHz | 0.8 μm @ 2 kHz<br>17 μm @ 0.5 MHz |

\*) with SLS ring vacuum chamber geometry

#### recent developments: DBPM

(Instrumentation Technology)

(scaled to SLS ring vacuum chamber geometry)

resolution:  $< 1 \ \mu m @ 0.5 \ MHz BW$ beam current dep.:  $< 2 \ \mu m (1:5 \ range)$ 

# **SLS Fast Orbit Feedback Layout**

- only one feedback (no separation between slow and fast feedback)
- 72 BPMs / 72 corrector magnets in each plane, 12 sectors
- sampling and correction rate: 4 kHz
- inverted response matrix: sparse matrix



decentralized data processing possible

• point-to-point fiber optic ring structure for global data exchange



#### **SLS DBPM / Fast Orbit Feedback Hardware Layout (sector view)**



## **Performance: Stability Frequency Ranges**

- short term stability: ~ 6 ms 1 s (1 Hz 150 Hz) mainly limited by
  - BPM resolution
  - corrector magnet resolution
  - system latency
  - eddy currents in vacuum chambers
- **long term stability**: 1 s days (run period) mainly limited by
  - reliability of hardware components
  - systematic errors of BPMs
  - thermal equilibrium of the machine ( $\rightarrow$  top-up)

## **Performance: Short Term Stability**

#### **SLS transfer function measurement**



# SLS FOFB: spectral power density (1-400 Hz)



(measured at tune BPM, outside of the feedback loop,  $\beta_x=11$  m,  $\beta_v=18$  m)

#### **SLS FOFB: Cumulated Power Spectral Density**

|            | horizontal                          |                                     | vertical                            |                                     |
|------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| FOFB       | off                                 | on                                  | off                                 | on                                  |
| 1- 100 Hz  | 0.73 μm · $\sqrt{\beta_x}$          | 0.46 μm · $\sqrt{\beta_x}$          | 0.43 μm · $\sqrt{\beta_y}$          | 0.30 μm · $\sqrt{\beta_y}$          |
| 100-150 Hz | $0.07 \ \mu m \cdot \sqrt{\beta_x}$ | $0.18 \ \mu m \cdot \sqrt{\beta_x}$ | $0.06 \ \mu m \cdot \sqrt{\beta_y}$ | $0.10 \ \mu m \cdot \sqrt{\beta_y}$ |
| 1-150 Hz   | $0.73 \ \mu m \cdot \sqrt{\beta_x}$ | $0.49 \ \mu m \cdot \sqrt{\beta_x}$ | $0.44 \ \mu m \cdot \sqrt{\beta_y}$ | $0.32 \ \mu m \cdot \sqrt{\beta_y}$ |

(incl. sensor noise)

RMS values to be scaled with  $\sqrt{\beta}$  at desired location

Examples (with FOFB): Tune BPM ( $\beta_y$ =18 m):  $\sigma_y = \sqrt{18} \cdot 0.30 \ \mu m = 1.3 \ \mu m$  (1 – 100 Hz) Source point at ID 6S ( $\beta_y$ =0.9 m):  $\sigma_y = \sqrt{0.9} \cdot 0.30 \ \mu m = 0.28 \ \mu m$  (1 – 100 Hz)

#### **Performance: Short Term Stability at Photon BPM**

external reference: Photon BPM at beam line 6S (protein crystallography)



⇒ successful suppression
 of noise sources
 originating from the
 electron beam



#### **Performance: Long Term Stability**

#### Strategy @ SLS:

- if photon BPMs are reliable enough
  - ⇒ used to minimize systematic effects of RF BPMs, girder drifts, temperature drifts, etc.
  - ⇒ slow PBPM feedback which changes reference orbit of FOFB (cascaded feedback scheme)
  - ⇒ keep photon beam position constant at first PBPM
- so far: only one PBPM at ID beam-line 4S and 6S is reliable enough and understood to be integrated in PBPM feedback

photon BPM signals (at 06S) at ~ 10 m from source point data points are integrated over period of 1 s



# **SLS Multi Bunch Feedback System**

#### Parameters & Layout

- bunch spacing: 2 ns
- 1 μrad maximum kick angle
  @ 2.4 GeV
  (15 kHz 250 MHz)
- overall latency time ~ 3 μs
  (3 turns of SLS storage ring)
- fast real time ADC and DAC /Storage Ring
  mezzanine boards with 8 bit,
  up to 1 GS/s and 750 MHz analog band width for low latency
  data processing
- clock generator for synchronization on picosecond time scale
- MBF has been developed in close collaboration with ELETTRA



# **SLS Multi Bunch Feedback System**

#### **First Results**

vertical mode pattern in SLS storage ring (revolution frequency  $f_0 = 1.04$  MHz)



corresponding pinhole camera images



#### **Requirements for Beam Stabilization along the European XFEL**



\* stability requirements for stable SASE operation at bunch-by-bunch distances of 200 ns



# Parameters for Intra Bunch Train FB Systems (IBFB) for the European XFEL:



## **Orbit "Feedback" at ERLs**

- orbit correction is more feed forward than feedback
- where is orbit stability required? To which level?
- orbit correction necessary along the accelerator? (different energy)
- frequency range of noise sources?



#### Summary

- digital BPMs already provide few µm resolution in the ~MHz bandwidth
  - $\rightarrow$  potential to go to  $\mu m$  resolution with several MHz BW in the near future
- sub-µm orbit stability achievable in 3<sup>rd</sup> generation light sources up to several 100 Hz BW (good mechanical design of girders, fast orbit feedback system(s))
- photon BPMs → sub-µm resolution of e<sup>-</sup> beam due to long lever arm
  → valuable devices to be integrated in orbit feedback systems
- multi bunch feedback system (SLS) under commissioning, design of orbit stabilization system for European XFEL has just started
- orbit feedback: certainly some common grounds of storage rings and ERLs...