Fast Orbit Feedback at the SLS

2nd Workshop on Beam Orbit Stabilisation
(December 4-6, 2002, SPring-8)

T. Schilcher

Outline

- Noise Sources at SLS
- Stability / System Requirements
- Fast Orbit Feedback Implementation
- Digital BPM System
- Status
- Outlook
Noise Sources at SLS

conditions:
- spectra measured with DBPM system
- normal work day
- booster ramping with 3 Hz for top-up operation
- no ID movements

<table>
<thead>
<tr>
<th>known noise sources</th>
<th>not yet identified noise sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Hz: booster ramping</td>
<td>85 Hz, 209 Hz</td>
</tr>
<tr>
<td>20-35 Hz: girder vibrations</td>
<td></td>
</tr>
<tr>
<td>50 Hz and harmonics: net line</td>
<td></td>
</tr>
</tbody>
</table>
Noise Sources at SLS

Integrated Vibration Spectrum (0.5 - 300 Hz)

- **Horizontal**
 - **Total**: 1.7 µm RMS
 - **Noise (DBPM)**: 1.2 µm RMS
 - **Beam Osc. (globally @ BPM)**: 1.2 µm RMS (scaled with $\sqrt{\beta_x(\text{mean})/\beta}$)
 - **Beta (β_x)**: 10 m
 - **Beta (β_y)**: 11 m

- **Vertical**
 - **Total**: 1.8 µm RMS
 - **Noise (DBPM)**: 1.2 µm RMS
 - **Beam Osc. (globally @ BPM)**: 0.9 µm RMS (scaled with $\sqrt{\beta_y(\text{mean})/\beta}$)
 - **Beta (β_y)**: 21 m

Noise Levels

- **Horizontal**
 - **Integrated RMS**: 0.4 µm RMS
 - **Local RMS**: 0.9 µm RMS
 - **Local RMS**: 0.6 µm RMS

- **Vertical**
 - **Integrated RMS**: 0.5 µm RMS
 - **Local RMS**: 0.5 µm RMS
 - **Local RMS**: 0.6 µm RMS

Notes

- $\beta_x \approx 10$ m (at location of pickup)
- $\beta_y \approx 21$ m (at location of pickup)

T. Schilcher

2nd Workshop On Beam Orbit Stabilisation, Dec. 4 - 6, 2002
Stability Requirements

- position stability: 1/10th of vertical beam size at location of insertion devices
 \[\Rightarrow 1 \, \mu m \text{ RMS in vertical plane (1\% coupling)} \]

 but:
 \[< 1 \, \mu m \text{ RMS in vertical plane (<1\% coupling)} \]

- suppress oscillations up to 100 Hz by factor of 5

- fast compensation of orbit distortions due to user controlled ID movements
Theoretical Noise Suppression with Feedback:

- PID controller
- bandwidth of vacuum chamber, corrector magnet including eddy currents: 120 Hz

-10 dB reached at:
 \[f_s = 1 \text{ kS/s}: \quad 20 \text{ Hz} \]
 \[f_s = 2 \text{ kS/s}: \quad 45 \text{ Hz} \]
 \[f_s = 4 \text{ kS/s}: \quad 100 \text{ Hz} \]

Transfer function of feedback loop still to be measured...

T. Schilcher
Power Supply Resolution / RMS Orbit Distortion

Residual vertical RMS orbit after orbit correction as seen by the monitors:

RMS Girder Error: 0.001 mm

- 60 ppm: $y_{rms} = 0.75 \mu m$
- 30 ppm: $y_{rms} = 0.5 \mu m$
- 15 ppm: $y_{rms} = 0.25 \mu m$

T. Schilcher

2nd Workshop On Beam Orbit Stabilisation, Dec. 4 - 6, 2002
Slow Orbit Feedback

central processing unit:
- calculate inverted response matrix (SVD)
- read all BPM values
- calculate correction
- set new corrector settings
- use control system network

Fast Orbit Feedback

\[A^I = \begin{bmatrix} 1 & \text{bpm} & 72 \\ \text{corr.} & 72 & 1 \end{bmatrix}_{72x72} \]

- processing decentralized and integrated in the 12 BPM stations (6 BPMs and 6 corrector magnets per station)
Fast Orbit Feedback Hardware Layout

DBPM System

- BPM pickups
- RF Front End
- Digital Down Converter
- Timing signal
- SHARC link ports (40 MB/sec)

FOFB System

- Fiber optic links to adjacent sectors (40 MB/sec)
- Fiber optic links
- DSP1, DSP2
- Serial interf.
- EPICS
- LAN (TCP/IP)

VME Bus
Digital BPM System Resolution

- Minimum turn-by-turn resolution (1 MS/s) at SLS < 20 µm
- Minimum closed orbit / feedback resolution (4 kS/s) < 1.2 µm
- Minimum "ramp-250ms" resolution (30 kS/s) at SLS < 3 µm

Power Level [dBm]

Beam Current [mA]

Resolution [mm]

Constant gain levels of:
- 60000
- 50000
- 40000
- 33000
- 30000
- 25000
- 20000
- 15000
- 10000
- 6000

- Turn-by-turn mode
- "ramp-250ms" mode
- Closed orbit / feedback mode
Implemented Modes:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Digital Down Converter Output Rate (kHz)</th>
<th>Passband BW (kHz)</th>
<th>Resolution RMS (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. turn by turn</td>
<td>1041</td>
<td>416</td>
<td>19</td>
</tr>
<tr>
<td>2. “250 ms mode”</td>
<td>32</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>3. “500 ms mode”</td>
<td>16</td>
<td>6</td>
<td>2.1</td>
</tr>
<tr>
<td>4. closed orbit mode</td>
<td>4</td>
<td>1.5</td>
<td>1.2</td>
</tr>
</tbody>
</table>

alternative FOFB modes (?):
- 4 kHz DDC output rate, 0.5 kHz analogue BW?
- 8 kHz DDC output rate and decimation on DSP, 1.5 kHz analogue BW?
Fast Orbit Feedback

Properties:
- update rate: 4 kHz
- BPM data exchange only between adjacent sectors over point-to-point fibre optic links (40 Mbytes/s) (reflecting the localized structure of the inverted response matrix)
- direct control of magnet power supplies (by-passing control system)
- decentralized structure of feedback ⇒ can continuously run even if not all BPM data are available for the current cycle (link breakdown etc...) ... still to be proven

T. Schilcher
2nd Workshop On Beam Orbit Stabilisation, Dec. 4 - 6, 2002
Status

- feedback running in “passive mode” (3 Hz)
- processing times:
 - digital down-conversion and decimation: \(\sim 250 \, \mu s \)
 - digital x/y calculation: \(\sim 70 \, \mu s \)
 - “global” data exchange: \(< 8 \, \mu s \)
 - feedback algorithm: \(\sim 40 \, \mu s \)
 - data transfer to PS controller: \(< 30 \, \mu s \)

 total delay: \(\sim 150 \, \mu s \)
 + 250 \, \mu s
 ("ADC integration")

- Digital down-converter firmware upgrade needed to synchronize all BPMs (but: presently priority to multibunch feedback system...
Dispersion Correction

- available BPM information per DBPM station:
 18 position readings per plane

Dispersion Function:

\[x = x_\beta + D_x \cdot \left\langle \frac{dp}{p} \right\rangle \]

\[\left\langle \frac{dp}{p} \right\rangle = \frac{1}{N} \cdot \sum \frac{x_i}{D_{xi}} \]

- \(|dp/p| < 2 \cdot 10^{-5}\) by central frequency control (BD application)
- maximum dispersive contribution:
 \[\left| D_x \cdot \left\langle \frac{dp}{p} \right\rangle \right| \leq 4 \mu m \]
dp/p Calculation

measurement: 24 November 2002

local fit: averaged over 100 samples

global fit: averaged over 3 samples

⇒ dispersion orbits (path length changes) will not be corrected by fast orbit feedback
Conclusion / Outlook

- "fast orbit feedback" (FOFB) scheme running in 3 Hz passive mode to check functionality and integration
- dp/p correction possible even if decentralized
- final decision about BPM bandwidth and DDC output rates to be made
- planned start of 3 Hz FOFB in active mode: Jan. 2003
- planned start of 4 kHz FOFB: ~ spring 2003 (firmware upgrade of BPM system)
BPM Operation Modes

Batch Processing Mode “250 ms mode” (present operation mode):

\[\langle \text{average position} \rangle \uparrow \]

- 64 samples
- \(= 2 \text{ ms} \)
- 320 ms
- \(= 252 \text{ ms} \)
- (3.125 Hz injection trigger)

Real Time Processing Mode (future operation mode):

\[\langle \text{position} \rangle \uparrow \]

- 8192 samples
- \(= 252 \text{ ms} \)
- 250 µs
- (4 kHz sample rate)