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Abstract

Long-wavelength coherent transition radiation is commonly used in electron beam diagnostics for the determination of bunch lengths.
Typically the spectrum of coherent transition radiation for a short bunch accelerator is settled in the low or sub-THz regime. Hereby, we
present a theoretical model based on physical optical techniques in order to calculate emission characteristics for transition radiation, for
both the radiating near-field and the far-field. This approach yields analytic solutions for the emitted electromagnetic fields without the
need to solve integral equations. The simulated intensity distribution is compared with measurements showing good agreement.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The well-known relation derived by Ginzburg and
Frank for transition radiation (TR) predicts frequency
independent symmetrical emission characteristics [1,2].
This result is valid only when the source fields impinging
onto the radiating screen are of considerably smaller extent
(ck) than the target dimension, which is typically the case in
the optical range of the spectrum.

Several approaches have been pursued to describe the
generation of TR. Generally one can distinguish three dif-
ferent perceptions for the emission process. A prominent
one is the model of the virtual quanta [3] which is based
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on the assumption of virtual photons, constituting the elec-
tromagnetic source fields of the particle, which are con-
verted into real photons by reflection at the finite metallic
interface. Prerequisite for this model is the fact that the
electromagnetic field of a highly relativistic electron in
the laboratory frame is confined in a flat disk perpendicular
to the direction of motion. Hence, this yields only tangen-
tial fields as required in the approach. Here it is taken full
advantage of the boundary condition that the tangential
electrical field Et at the boundary of a perfect electrical con-
ductor (PEC) must vanish. This necessitates a change in
sign of the incoming to the outgoing electrical field, which
thus corresponds to the reflection of the incident wave at
the metallic target interface [4,5].

However, this scheme can also be applied for a tilted
screen where the normal projections of the tangential fields
mediate the change in sign of the outgoing wave but which
is then reflected in another direction as the incident wave.
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The second approach for the generation of TR is that of
the moving mirror charge [1]. Here the electron and its mir-
ror-(anti) particle which is incident from the opposite side
of the target are stopped abruptly at the screen boundary
while their charge is annihilated. In this view only their
electromagnetic fields are remaining which thus can be
identified as radiation from the target. A more realistic per-
ception than charge annihilation is that of Bremsstrahlung
[6]. Similar to the annihilation model the relativistic elec-
tron is abruptly stopped at the target. In accordance with
the fundamental principle of energy conservation the
kinetic energy of the electron is emitted as radiation which
can be identified as TR.

In this paper we introduce a fourth view for the genera-
tion of transition radiation in which the metallic target
screen itself is considered as source of the radiation using
the so-called Physical–Optics (PO) technique [7,8]. In this
perception the magnetic field of the relativistic electron
induces surface current density~js in the finite circular metal-
lic target, from which the vector potential representation of
the radiated field is acquired. The use of the well-known PO
approach yields an analytical solution for the electromag-
netic fields of the emitted TR. Thus, it represents a very fast
method for the calculation of the emerging fields, without
the need to solve integral equations. When calculating the
components of the resulting electrical and magnetic fields
a further formalism has been introduced that provides accu-
rate approximations for both cases the far-field and the
radiating near-field. Similar to the model of the virtual
quanta only the backward TR emission is considered.

The derivation of TR emission using the virtual quanta
model is based on scalar Kirchhoff diffraction theory.
However, we will show, that due to the redundancy of
the PEC boundary conditions both models are equivalent.
In contrast our model introduces a descriptive presentation
of the generation mechanism of TR which is based on a
vectorial formalism and which allows the computation of
TR as obtained even from rough and uneven surfaces [9].

Since standard diagnostic ports use targets rotated by p/
4 into the electron beam path, a circular tilted radiator is
considered. The induced surface currents corresponds to
the boundary condition for the magnetic field, which may
become redundant to the one of the electrical field in the
case where a perfect electrical conducting (PEC) target
interface is assumed.

The far-field condition L� c2k for the radiating target
as given by comprehensive references [4,5] yields distances
up to several hundreds of meters for TR in the FIR region.
This is a consequence of the source fields, which transversal
extent is given by d = ck. In our description the transition
from the near-field to the far-field zone is characterized
by the Rayleigh distance, which is approximated according
to LR ¼ 4r2

s=k where rs stands for the radius of the radiating
screen. It is worth noting that in the limiting case where the
target size (d = 2rs) equals the transversal extend of the
source field (ck) the two descriptions for the far-field crite-
rion converge.
The remainder of the paper is organized as follows. In
the second section an electromagnetic description for the
source field formation induced by the relativistic electron
passage through the target is introduced. Based on this
electromagnetic source term a closed form expression for
the backward coherent transition radiation (CTR) from
an oblique target screen is then presented in the third sec-
tion. The introduced formalism yields accurate results for
the wave zone (or the far-field, i.e. for the observation
points farther than the Rayleigh distance) and provides
very good approximations for the radiating near-field (or
the Fresnel zone, i.e. for observation points within the Ray-
leigh distance), both for finite targets with lateral sizes that
may become even smaller than the transversal extent ck of
the relativistic electron’s Coulomb-field Fourier-compo-
nent. A proper validation of the emission formalism is
given in the fourth section along with a typical test exam-
ple: This confirms the asymmetric emission characteristic
occurring for the horizontal polarized CTR lobes. This
asymmetry predicted by the formalism was experimentally
confirmed at the pre-injector LINAC of the Swiss Light
Source (SLS) [10,11]. Finally the contribution concludes
in the fifth section with a short summary.
2. Electromagnetic fields of relativistic electrons

For a relativistic electron which rest frame moves in free
space along the z-axis in respect to the laboratory frame we
define the longitudinal Fourier transform by:

ÂðxÞ ¼
Z þ1

�1
AðgÞ � e�igxdg ¼ eix z

bc �
Z þ1

�1
AðtÞ � e�ixtdt ð1Þ

with the longitudinal coordinate g ¼ t � z
v ¼ t � z

bc.
It is convinient to consider the problem in cylindrical

coordinates. From symmetry only the radial and longitudi-
nal components of the electric field (Er and Ez) and the azi-
muthal components of the magnetic field (B/) have to be
considered. In vacuum with ~D ¼ �0

~E and~B ¼ l0
~H the mac-

roscopic Maxwell equations in cylindrical coordinates are
written as follows:

1

r
orðrErÞ þ ozEz ¼

q
e0

ð2Þ

1

r
o/B/ ¼ 0 ð3Þ

frac1ro/Ez ¼ 0 ð4Þ
ozEr � orEz ¼ �otB/ ð5Þ
1

r
o/Er ¼ 0 ð6Þ

� ozB/ ¼
1

c2
otEr ð7Þ

1

r
orðrB/Þ ¼ l0jz þ

1

c2
otEz ð8Þ

where q denotes the charge density and the current ~j has
only a longitudinal component originating from the
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moving charge distribution. Applying the above defined
Fourier transform (1) to Maxwell’s equations yields:

1

r
orðrÊrÞ þ

ix
bc

Êz ¼
q̂
e0

ð9Þ

1

r
o/B̂/ ¼ 0 ð10Þ

1

r
o/Êz ¼ 0 ð11Þ

ix
bc

Êr � orÊz ¼ ixB̂/ ð12Þ

1

r
o/Êr ¼ 0 ð13Þ

� ix
bc

B̂/ ¼ �
ix
c2

Êr ð14Þ

1

r
orðrB̂/Þ ¼ l0ĵz �

ix
c2

Êz ð15Þ

Maxwell’s equations are then solved in Fourier space
obtaining the Fourier-components of the magnetic field
which are given by [5]

B̂/ ¼
q

ð2pÞ1=2
�0b

2c

x
cc
� K1

x
b cc

r
� �

; ð16Þ

where K1 is the modified Bessel function of first order.
From Eq. (14) it follows directly that

Êr ¼
q

ð2pÞ1=2
�0b

2c

x
bc
� K1

x
b cc

r
� �

: ð17Þ

The longitudinal component is obtained by inserting Eqs.
(16) and (17) into (12)

orÊz /
ix
bc

x
bc
� K1

x
b cc

r
� �

� ix
x
cc
� K1

x
b cc

r
� �

¼ iðxÞ2

ccb2
� K1

x
b cc

r
� �

ð1� b2Þ ¼ iðxÞ2

cc3b2
� K1

x
b cc

r
� �

:

ð18Þ

For simplicity we have neglected here the pre-factor. With
or(K0(a r)) = �a Æ K1(a r) and by inserting the pre-factor the
longitudinal component is readily calculated:
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Fig. 1. The radial field r � ÊrðrÞ (due to the Jacobian for the cylindrical coo
Êz ¼ �
ix
c2b

q

ð2pÞ1=2
�0b

2c
� K0

x
b cc

r
� �

: ð19Þ

For typical kinetic energies of some hundred MeV the
c-factor becomes large and the longitudinal component
Êz can therefore be neglected. Thus, it indicates that the
electromagnetic field is confined in a disk perpendicular
to the direction of motion. In the laboratory frame the
longitudinal components are contracted by a factor of c
with respect to the transverse/tangential field components:
Êr; B̂/ / 1=c, Êz / 1=c2.

Fig. 1 depicts two plots of the radial electrical field
r � ÊrðrÞ (due to the Jacobian for the cylindrical coordinate
transform) for different values of the relativistic Lorentz
factor c. For each c the fields are computed for five different
wavelengths (k = 0. mm, 0.5 mm, 1.0 mm, 2.0 mm and
5.0 mm). For large wavelengths the fields are nearly con-
stant over the radius of the screen. The effect is becoming
more dominant for higher values of c. Since, B̂u ¼
ðb=cÞÊr the same behavior applies for the magnetic field.
3. Transition radiation emitted from an oblique target screen

A standard TR diagnostic port consists of a target
screen rotated by an angle of p/4 to the direction of the
electron beam allowing the extraction of the backward
TR through a vacuum window. In the following a tilted
circular thin metallic screen representing the radiating
source is considered. Most important the metallic target
screen itself is treated as a source of the emitted TR using
the Physical–Optics (PO) approach. The PO technique is a
well-known and widely used optical approximate tech-
nique for the calculation of the electromagnetic field scat-
tered from a perfectly conducting (PEC) surface by an
incident electromagnetic field. It is a very fast method
since it does not require an integral equation to be solved.
The idea is to approximate the surface currents~js induced
by the incident magnetic fields ~H ðincÞ which then represents
the source term in the inhomogeneous Helmholtz equa-
tion describing the propagation of the resulting vector
potential ~A.
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Assuming a PEC target physically means that the fields
do not penetrate into the conductor. Even for realistic
metallic conductors one obtains skin depths in the order
of 100 nm [12] which compares only to tiny a fraction of
the wavelength involved (k = 1 mm). The conductor can
therefore be assumed to be field-free, and, hence, only
reflected fields are generated in the framework of the vir-
tual quanta model. The connection to PO is revealed along
the boundary conditions, which provides an exact measure
of the surface current, i.e. for the source term of the back-
ward TR.

3.1. PEC boundary conditions

We start with the well-known boundary conditions at
the interface of a dielectric medium i adjacent to a PEC

~Eit ¼~0 ð20Þ
~H it ¼~js ^~n ð21Þ
�~Ein ¼ f ð22Þ
l~H in ¼ 0 ð23Þ

where f is the surface charge density, n labels the field com-
ponent normal to the interface, ~n denotes the normal unit
vector directed into region i, index t labels the tangential
field component and~js is the surface current density, which
can be retrieved by inverting Eq. (21)

~js ¼~n ^ ~H it ð24Þ
In case of unknown surface currents and charge densities
and while assuming the non-static case only condition
(20) is required. Condition (21) and hence Eq. (24) will
act as a proper definition for the unknown surface current.
As the electromagnetic field of the relativistic electron has
negligible longitudinal field components i.e. comprising
only the transversal polarization, condition (20) has to be
satisfied. This yields total electrical field ~EðtotÞ to become
zero at the PEC interface and renders the outgoing wave
~EðscÞ to be a reflected one with ~EðscÞ ¼ �~EðincÞ having an in-
verted polarization direction. Again, this is tantamount to
the picture of the virtual quanta where the electromagnetic
field of the relativistic electron is set equivalent to an elec-
tromagnetic pulse that afterwards may undergo total spec-
ular reflection at the target screen.

3.2. Surface currents induced by the magnetic field

For the transversal magnetic field the contributions
from the incident and the totally reflected wave fields-
namely ~H ðincÞ and ~H ðscÞ will equally sum up to form ~H ðtotÞ,
which according to (24) induces the source current density
for the PO approach.

~js ¼~n ^ ~H ðtotÞ ¼ 2~n ^ ~H ðincÞ ð25Þ

Since everything is linear, this generalizes to target planes
other than z = 0, i.e. tilted target screens where e.g. normal
projections of the transversal electrical field on the target
interface emerge. The normal components only mediate
the sign reversal in the tangential field projections with re-
spect to the oblique incident virtual quanta and its corre-
sponding reflection. Dealing with a PEC interface has
thus revealed a sort of redundancy: Both boundary condi-
tions for the electrical field are surplus relations if the
emerging TR is modeled using solely the magnetic field
(and its corresponding boundary condition) where the
resulting surface current density is the proper source of
TR. But then enforcing the boundary conditions for the
electrical field components only has led us to the indepen-
dent model of e.g. virtual quanta. In the case of a general
target material (i.e. non PEC material) the redundancy is
removed and always two types of boundary conditions
have to be taken into account.
3.3. Vector potential representation

In the target the resulting surface current densities~js are
acting as electric current sources from which a vector
potential2 ~A for the radiated field can be determined:

d~A ¼ l0

4p
�~j � e

ixc R

R
dS with dS ¼ r0dr0d/0 ð26Þ

R is the distance from a point~r0s ¼ ðx0; y0; z0Þ on the target
screen to a point of observation ~robs ¼ q �~eq (see Fig. 2).
Here we have used the fact, that the vector potential ~A does
satisfy the inhomogeneous Helmholtz equation, which de-
scribes the propagation of the vector potential. The solu-
tion to the inhomogeneous Helmholtz equation is given
by the superposition of the spherical waves ei(x/c)R/R.
3.4. Edge effects and multiple reflections

Within the framework of our source model we have
assumed an anechoic behavior for the induced currents at
the screen boundaries. However, possible fringe effects
could be considered by applying a modified surface current
density calculated by perturbation theory, but noteworthy
without changing our formalism. However, in contrast to
the analytical solution presented here, this necessitates a
numerical approach, rendering the formalism much more
complex.

An additional question may arise with respect to tempo-
ral perturbations that could be caused by a potential sur-
face (current) wave resonance on the finite target screen.
There are several arguments against this conjecture. First,
the PEC like target barely supports surface waves. Second,
referring to the scattering model (i.e. the model of virtual
quanta) a finite-sized target would only be excited through
the target edges; hence, the strength of the resulting tempo-
ral perturbation is below the order of magnitude of the
aforementioned edge effects. In turn a potential distortion
of the outgoing wave must be radiated by the sides of the
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screen. Thus, a possible perturbation can only be a second
order effect of the already small coupling efficiency. The
third rationale is displayed within the proposed model.
Here, the surface current density is induced virtually
instantaneously in the PEC, while the generation of the
current density by the magnetic fields happens on a very
short timescale due to the fact that the electromagnetic
fields of the relativistic electron are confined into a flat disk
perpendicular to the direction of motion. Therefore, we can
presume that the stimulation is too short compared to its
strength to efficiently excite potential resonant surface
waves within the finite target screen.

Mutual interactions namely multiple reflections at the
metallic target screen can be neglected. This is mainly
due to the fact, that we are dealing with a plane metallic
scatterer which hardly causes multiple reflections (meaning
that a scattered field might be reflected at another point of
the surface again). Here we only have to consider the main
reflection at the target screen ð~H inc ! ~H scÞ Hence, this jus-
tifies the PO approach used in our model.
3.5. Coordinate transformation: p/4 rotation of the target

screen

In order to determine the TR from a tilted target the
screen is parametrized according to Fig. 2:

x0 ¼ r0 cosð/0Þ ð27Þ
y0 ¼ r0 sinð/0Þ ð28Þ
z0 ¼ 0 ð29Þ

The original coordinates are obtained from the screen
coordinates by a p/4 rotation around the y 0-axis:

x ¼ 1ffiffiffi
2
p x0 ð30Þ

y ¼y0 ð31Þ

z ¼ 1ffiffiffi
2
p x0 ð32Þ
The transversal plane normal to the electron trajectory is
described with the following polar coordinates (r,/);
x = rcos(/), y = rsin(/):

rðr0;/0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðr0 cosð/0ÞÞ2 þ ðr0 sinð/0ÞÞ2

r
ð33Þ

/ðr0;/0Þ ¼ argðxþ i � yÞ

¼ arg
1ffiffiffi
2
p r0 cosð/0Þ þ i � r0 sinð/0Þ
� �

: ð34Þ

Due to the strong longitudinal confinement of the relativis-
tic electron’s field, the magnetic field will hit the p/4-tilted
target at continuous subsequent positions z1, z2, . . . where
surface current densities~js are then induced at the associ-
ated time delays t1, t2,. . .. The moving impact position as
well as the associated impact time are characterized by a
phase relation which is interrelated to the target screen’s
coordinate transformation. Therefore, we set the phase
on the screen at position z to WðzÞ ¼ ei x

b cz. The Fourier-
components of the magnetic field on the screen are given
by Eq. (16) multiplied with the phase term W(z) leading to:

B̂/ ¼
q

ð2pÞ1=2
�0b

2c

x
cc

ei x
b czK1

x
b cc

r
� �

¼ q

ð2pÞ1=2
�0b

2c

x
cc

e
i x
b c

1ffiffi
2
p r cosð/ÞK1

x
b cc

rðr0;/0Þ
� �

: ð35Þ

The x and y components are then:

B̂x ¼ � sinð/ðr0;/0ÞÞ q

ð2pÞ1=2
�0b

2c

� x
cc

e
i x
b c

1ffiffi
2
p r0 cosð/0ÞK1

x
b cc

rðr0;/0Þ
� �

ð36Þ

B̂y ¼ cosð/ðr0;/0ÞÞ q

ð2pÞ1=2
�0b

2c

� x
cc

e
i x
b c

1ffiffi
2
p r0 cosð/0ÞK1

x
b cc

rðr0;/0Þ
� �

: ð37Þ
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With ~̂j ¼ 2 �~n ^ ~̂H following the PO approach the compo-
nents of the current density indexsurface current density in-
duced by the magnetic field are calculated according to:

l0ĵx ¼�
2ffiffiffi
2
p B̂y ð38Þ

l0ĵy ¼
2ffiffiffi
2
p B̂x ð39Þ

l0ĵz ¼�
2ffiffiffi
2
p B̂y : ð40Þ

As a next step we express the radiated field at an observa-
tion point~robs ¼ ðq; h;uÞ by the vector potential. For large
distances q from the screen compared to the screen radius
(q� r) the vector potential in spherical coordinates is thus
expressed using Eq. (26) in conjunction with the transfor-
mation from cartesian to spherical coordinates:

~eq ¼ sinðhÞ cosðuÞ~ex þ sinðhÞ sinðuÞ~ey þ cosðhÞ~ez ð41Þ
~eh ¼ cosðhÞ cosðuÞ~ex þ cosðhÞ sinðuÞ~ey � sinðhÞ~ez ð42Þ
~eu ¼� sinðuÞ~ex þ cosðuÞ~ey ð43Þ

d~̂A ¼ l0

4p
eikq

q
cosðuÞ sinðhÞĵx þ sinðhÞ sinðuÞĵy

�
þ cosðhÞĵz; cosðhÞ cosðuÞĵx þ cosðhÞ sinðuÞĵy

� sinðhÞĵz;�sinðuÞĵx þ cosðuÞĵy

�
dS: ð44Þ

Here we have used the wavenumber k = x/c.
The magnetic induction ~̂B ¼ ðB̂q; B̂h; B̂uÞ is found

according to ~̂B ¼ rotð~̂AÞ.

d~̂B ¼ l0

4p
0;

eikq

sinðhÞq

�
�ik sinðhÞðcosðuÞĵy � sinðuÞĵxÞ

�

þ
sinðhÞðcosðuÞĵy � sinðuÞĵxÞ

q
;
eikq

q
ðikðcosðhÞ

� cosðuÞĵx � sinðhÞĵz þ cosðhÞ sinðuÞĵyÞÞ

�
cosðhÞ cosðuÞĵx � sinðhÞĵz þ cosðhÞ sinðuÞĵy

q

!!
dS

ð45Þ

Taking only the first order terms 1
q into account, the above

expression simplifies to:

d~̂B � l0

4p
0;

eikq

sinðhÞq

�
�ik sinðhÞðcosðuÞĵy

�

� sinðuÞĵxÞ;
eikq

q
ðikðcosðhÞ cosðuÞĵx � sinðhÞĵz

þ cosðhÞ sinðuÞĵyÞÞ
��

dS ð46Þ

The electric field ~̂E is computed by:

~̂E ¼ 1

ick�0

rotð~̂HÞ ¼ 1

ick�0l0

rotð~̂BÞ: ð47Þ

Referring to the aforementioned first order approximation,
the field ~̂E is thus written as
dÊq ¼ 0 ð48Þ

dÊh �
k

4p
1

ic�0

eikq

q
ðcosðhÞ cosðuÞĵx � sinðhÞĵz

þ cosðhÞ sinðuÞĵyÞdS ð49Þ

dÊu �
k

4p
1

ic�0l0

eikq

q
ðcosðuÞĵy � sinðuÞĵxÞdS ð50Þ

Eqs. (48) to (50) and (46) give an analytic electromagnetic
field description of backward TR as emitted from an obli-
que, thin metallic target screen. The field components are
calculated by integrating the above expressions over the
thin circular target screen.

The spectral energy flux of the emitted radiation is cal-
culated from the Pointing vector. Expressing the magnetic
field ~H through the electrical field ~E [5] yields that the spec-
tral energy flux at the point of observation must be propor-
tional to the module square of the transverse electrical field
~E. Using Parseval’s theorem and dS = r 0d/ 0dr 0 we finally
get

d2I
dmdX

/ j~̂Ej2 ¼
Z rs

0

Z 2p

0

ðd~̂Eh þ d~̂EuÞ
����

����
2

ð51Þ
3.6. On simplification and error estimation

In order to define a range of validity of the developed
formalism, a detailed error estimation and discussion
including the applied assumptions, will be presented.

3.6.1. Phase error

In Eq. (44) we have used the simplification R � q by
inferring that q� r.

Considering the function f ðx1; . . . ; xnÞ ¼ hðx1; . . . ; xnÞ�
egðx1;...;xnÞ, where h and g are non-exponential functions, it
follows that oxl f ¼ egðoxl hþ hoxl gÞ. Hence it must be that
rotð~̂AÞ / eikRðq;h;uÞ with eikR(q,h,u) being the sole exponential
term. Therefore the inferred constraint is dramatically
relaxed by allowing to substitute eikq with eikR in the final
expression for the Fourier-components of the electrical
field, where the exact distance R is given by the following
expression:

R

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqsinðhÞcosðuÞ�xÞ2þðqsinðhÞsinðuÞ�yÞ2þðqcosðhÞ�zÞ2

q
ð52Þ

Here ~robs ¼ ðq; h;uÞ represents the position of the
observer and~rs ¼ ðx; y; zÞ yields a point on the circular tar-
get screen.

3.6.2. Comparison of first order and second order terms

When using back substitution of the exact phase term
the remaining error is estimated by comparing second
order against the first order terms.
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Expressing R 0 by R0 � q� ð~robs �~rsÞ=q, is valid for q� r,
independent of the value kq, providing an adequate
approximation even in the radiating near-field zone [12].
By using eikR0=q instead of eikq/q one computes the first
order and the second order terms in the Fourier-compo-
nents of the electrical field:
~Eð1Þ / k=q whereas ~Eð2Þ / 1=q2 and ~Eð2Þ / kr=q2, with

(i), i = 1, 2 denoting the respective order. Therefore the sec-
ond order terms are negligible when q� r and kq� 1 is
valid. In our experimental set-up the typical distance from
the radiating target screen (i.e. to the observation plane
respectively the first optical element) is 250 mm. For such
a distance and frequencies higher than 30 GHz kq� 1 is
easily fulfilled. The corresponding electrical field errors
for a target screen of radius 28 mm are then estimated to
be in the order of 10%. The maximum error is expected
to occur normal to the target screen, since at this angle
the largest projection of the tilted screen is found. Due to
the radially polarized character of TR the intensity must
vanish in this symmetrical center. Hence the absolute value
of the differences is negligible.

As already mentioned a conservative definition for the
Rayleigh distance with LR ¼ 4r2

s

k is found in classical antenna
theory. An alternative definition (IEEE) describes the near-
to-far-field boundary by the criteria that the phase of the
emitted radiation differs by k/8 to the phase of a spherical
wave. Both definitions yield Rayleigh distances larger than
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Fig. 3. Computed long-wavelength TR intensity plot (single electron of 100 M
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Fig. 4. The calculated long-wavelength TR radiation pattern (single electron o
of R = 250 mm. Left side: at u = 0 (horizontal polarization); Right side: at h ¼
is computed: blue line k = 10.0 mm, red line k = 5.0 mm and black line k = 2.5
path with an asymmetry in emission. (For interpretation of the references to co
one meter for a frequency of 120 GHz (k = 2.5 mm), prov-
ing that the formalism presented here provides a very good
approximation for the radiating near-field. Further details
are discussed in the next section in conjunction with Fig. 7.

4. Discussion

The introduced analytical model yields a frequency
dependent description for the emission process of the
long-wavelength TR. In the following the intensity distri-
bution is calculated using our analytical model for a single
electron of 100 MeV, which corresponds to the beam
energy of the SLS pre-injector LINAC. In Fig. 3 two-
dimensional intensity distributions are plotted for three
wavelengths: k = 10.0 mm (30 GHz), k = 5.0 mm (60
GHz) and k = 2.5 mm (120 GHz). Hereby the screen has
been discretized according to a grid of points (r 0,/ 0). The
integral was then evaluated as the finite sum over the
resulting 4500 grid points. The plots are computed on a
plane at a distance x = 250 mm. The figures clearly repro-
duce the expected angular broadening of the emission pro-
file for increasing wavelengths. Furthermore an asymmetry
in the emission pattern is observed with respect to the
horizontal dimension. Similar to the increased radiation
divergence the emission asymmetry is pronounced for
longer wavelengths. Fig. 4 shows one-dimensional angular
representations of the aforementioned intensity profiles, i.e.
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their corresponding projections on a sphere of 250 mm
radius. The horizontal profile is parametrized with h where
as the vertical one is expressed in u (see Fig. 2). The asym-
metry is exclusively apparent in the calculated horizontal
intensity profile. For both profiles the maximum in emis-
sion occurs at angles much larger than 1

c as predicted by
the formalism of Ginzburg and Frank for the infinite target
size.

These very specific characteristics of the simulated trans-
verse CTR patterns as resulting from the finite-size effects
of the target screen have been experimentally confirmed
at the SLS LINAC [10,11], for the first time in the coherent
long wavelength range. The measurements were conducted
using a Golay cell far infrared detector mounted on two
motorized linear stages thus allowing two-dimensional
scans at a distance x = 250 mm to the target screen. The
measurements were done for both horizontal and vertical
polarization using a wire-grid polarizer in front of the vac-
uum window of the diagnostic port. For each angular posi-
tion 30 CTR pulses have been recorded. The dots in Fig. 6
give the mean value, whereas the error bars indicate the
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Fig. 5. Measured coherent power density spectrum at the SLS LINAC.
The resulting spectrum is in the range of up to 600 GHz. The full line
depicts the spectrum as obtained by Fourier transform of the interference
profile. The dashed line gives the spectrum as weighted with the transfer
function of the interferometer [8]. The latter curve is used for the
simulation in Fig. 6.
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Fig. 6. Measurement of CTR intensity at the SLS LINAC. Left side: horizon
against computed intensity profiles according to the formalism presented in thi
measured with an MPI and is shown in Fig. 5.
corresponding standard deviation due to machine fluctua-
tions. The intensity radiation patterns (bold line) are com-
puted for a discrete set of frequencies and weighted
according to the electron bunch power density spectrum
as measured with a Martin–Puplett interferometer (MPI)
(c.f. Fig. 5). Each horizontal radiation pattern associated
to the corresponding spectral line reproduces the distinctive
asymmetry. Hence, any spectral superposition must also
yield to the asymmetry which points always in the indicated
direction. The curves are finally convoluted with the 6 mm
aperture of the detector window. The measurements as
depicted in Fig. 6 show a good agreement with the theoret-
ical predictions. The asymmetry due to the rotation of the
target screen was confirmed for the horizontal profile of the
two-lobed emission pattern. It was found that the maxi-
mum in emission occurred at an angle of 50 mrad which
is a factor 10 larger than the one predicted by Ginzburg
and Frank, showing the influence of the finite target size
as predicted by the formalism. The underlying power den-
sity spectrum used in the simulation has been measured on
another occasion with different machine setting of the
LINAC. Hence the discrepancies between measurements
and simulations can be attributed mainly to deviations in
the assumed power density spectrum.

The emitted radiation is also characterized by its phase
front. Fig. 7 gives a comparison between the phase front
of a spherical wave and the CTR. It is found that the phase
difference of CTR with respect to a perfect spherical wave
originating from~rs ¼ ð0; 0; 0Þ is oscillating with a swing of
about k

4
for the shortest wavelength indicated (2.5 mm).

This compares well with the aforementioned alternative
definition of the Rayleigh distance at which the mentioned
phase difference should amount k

8
indicating that the obser-

vation point lies within the radiating near-field. The oscil-
lating behavior is attributed to diffraction at the screen
boundary. Therefore the emitted long wavelength CTR at
this distance can approximated as a spherical wave. The
change in sign at h ¼ p

2
respectively at u = 0 reproduces

the radial polarized character of the emitted CTR.
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, respectively in u = 0, indicating the radially polarized character of TR. (For interpretation of the references

to colour in this figure, the reader is referred to the web version of this article.)

1.52 1.54 1.56 1.58 1.60 1.62
θ [rad]

0

0.2

0.4

0.6

0.8

1
30 μm

100 μm

Ginzburg-Frank

sp
ec

tr
al

 e
ne

rg
y 

fl
ux

 [
a.

u.
]

Fig. 8. Calculated intensity distribution (single electron of 100 MeV) for
an oblique target screen of radius rs = 28 mm at a spherical distance of
R = 1000 mm and at u = 0. The normalized distribution is computed for
the wavelengths: blue line k = 30.0 lm, red line k = 100.0 lm. The black
line presents the prediction of Ginzburg and Frank. (For interpretation of
the references to colour in this figure, the reader is referred to the web
version of this article.)

D. Sütterlin et al. / Nucl. Instr. and Meth. in Phys. Res. B 264 (2007) 361–370 369
4.1. Short wavelength limit

In the short wavelength limit the presented CTR emis-
sion model correctly merges into the well-known radiation
pattern as predicted by the Ginzburg and Frank formalism
where the asymmetry in horizontal direction is not appar-
ent and the two radiation lobes are separated by an angle
of 2/c.

In the case of normal incidence the prediction of Ginz-
burg and Frank can be reproduced analytically. Applying
the formalism on the special case of normal incidence the
spectral energy in the far-field (rs� q) R = q) is found
to be:

d2I
dxdX

/
x
c

� �2

c

 !2 Z rs

0

J 1ðsinðhÞx
c

rÞK1

x
b cc

r
� �

rdr

����
����
2

ð53Þ

where J1 is the first order Bessel function. The integral can
be solved analytically [13]:

d2I
dmdX

/ b2 sinðhÞ2

ð1� b2 cosðhÞ2Þ2
½1� T ðm; hÞ� ð54Þ

using

T ðm; hÞ ¼ x=crs

bc
J 0ðx=crs sinðhÞÞK1

krs

bc

� �

þ krs

b2c2 sinðhÞ
J 1ðkrs sinðhÞÞK0

x=crs

bc

� �
: ð55Þ

The short wavelength limit is tantamount to rs!1 (infi-
nite target screen). Thus, the term T(m,h) vanishes and the
relation of Ginzburg and Frank is revealed in the special
case of normal incidence. The radiation pattern displayed
in Fig. 8 shows the horizontal intensity profile on a sphere
of 1 m radius calculated for the general case of the tilted
target screen using formula (51). The asymmetry due to
the p/4 rotation of the target screen with respect to the elec-
trons trajectory is not apparent at these wavelengths and
the emission maximum converges to the expected angle 1

c.
At these short wavelengths the source fields impinging on
the screen are much smaller than the target size corre-
sponding to the case of the infinite target screen.
5. Summary

The analytical formalism introduced in this paper is
rather simple compared to other formalisms [4,5] and
numerical codes used for simulations [14]. Nevertheless it
covers all cases including the tilted target screen of finite
extent, and both the radiating near-field and the far-field
and hence, encompassing a wide frequency range. The pre-
dicted asymmetry and the angular broadening of the emis-
sion was experimentally confirmed. This effects are
calculated to occur in the millimeter wavelength range at
the SLS pre-injector LINAC (100 MeV). For beam ener-
gies of several GeV this behavior must also be taken into
account for TR emitted in both the FIR and IR spectral
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range. This results from the fact that the transversal extent
(ck) of the Coulomb source fields is considerably larger
than the target dimension at this wavelengths and for such
beam energies.

For small wavelengths in the FIR range the model is in
agreement with the predictions of Ginzburg and Frank.
For the emission from an oblique target screen the charac-
teristic asymmetry in emission vanishes at high frequencies
and the two maxima in the emitted energy flux are sepa-
rated by the well-known angular distance of 2/c as
obtained by the Ginzburg and Frank formalism.
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