Dipl.-Ing. Kramert GmbH

Villigerstrasse 370
CH-5236 Remigen

Tel. 0562841555
Fax 0562845055
www.kramert.ch
E-mail kramert@kramert.ch

Ingenieurbüro für schnelle Elektronik Engineering office for fast electronics

Instruction Manual

SHARC IO-Pack: DSP VPII

All technical data subject to change without notice.

1 Manual Revision History

Version	Date	Name	Comments
A	Feb. 10, 2005	R.Kramert	DSP_VPII_Submodul2.doc
B	Feb. 14, 2005	R.Kramert	DSP_VPII_Submodul3.doc
C	Sept. 8, 2005	R.Kramert	DSP_VPII_Submodul4.doc
D	Oct. 11, 2005	R.Kramert	DSP_VPII_Submodul5.doc
E	Oct. 18, 2005	R.Kramert	DSP_VPII_Submodul6.doc
F	Oct. 19, 2005	R.Kramert	DSP_VPII_Submodul7.doc
G	Mar. 21, 2006	R.Kramert	DSP_VPII_Submodul8.doc
H	Jan. 23, 2007	G.Marinkovic	DSP_VPII_Submodul9.doc

2 Contents

1 Manual Revision History 2
2 Contents 3
3 Glossary 3
4 General Description 4
5 Timing Specifications 5
6 Address Map 6
7 Registers 10
8 Connector Pin Specifications 12
9 Switches 13
10 LEDs 14
11 Power Requirements 14

3 Glossary

SHARC IO-Pack A piggy back concept which realizes a very flexible I/O configuration to the SHARC DSPs.

LCTL Link Buffer Control Register
LCOM Link Common Control Register
GCR Gain Control Register
TCR Temperature Control Register
BPM Beam Position Monitor
pBPM photon Beam Position Monitor
RF-FE Radio Frequency Front End VME Module
WS-2126 VME Sharc Cluster Module
VPC VME Physical-Mezzanine-Card Carrier Module
CD-704 Four Channel I/V-ADC VME Transition Module
TB-705A Transition Board, located at the rear slot of each BPM-RF-Module and DSP-Module. The transition board is physically connected to the four temperature sensors and five gainDACs of the front-RF-module. Communication between the transition boards is done via two serial RJ45 differential ports.

4 General Description

Table 1: SLS-pBPM SYSTEM
The DSP VPII Submodule is a size 3 Sharc IO-Pack. A Virtex II Pro FPGA realizes four communication tasks. Eight memory pages are available at base address (towards VME) 0×1400. Memory mapping is controlled by the Page-Select-Register PSR0 (0x3F). Page $0 . .4$ are predefined IO-ports and related registers. Page $5 . .7$ are not used.

The Gain Control Ports are extended to nine ports with five channels each and mapped to $0 \times 00 \ldots 0 \times 2 \mathrm{C}$ on memory page 0 . If an error occurs during link access then an error bit is set. These registers are physically located on the TB-705A transition board. There is write and read access to all gain registers.
There are 9×4 Temperature Sensors. These channels are mapped to $0 \times 00 \ldots 0 \times 23$ on memory page 1 . The sensors are periodically read and the registers are updated once per second. These registers are physically located on the TB-705A transition board. There is read access to all Temp registers.

Three Sharc Link Ports are emulated with Link Buffer Control Register (LCTL), Link Common Control Register (LCOM) and three Link Buffer Fifos with a depth of two. These Ports work with 40 MHz at release 1 but are prepared to work with 80 MHz if needed in a later release. The Sharc Link Ports are mapped to memory page 2.

Memory is reserved and predefined for four p-BPM's on memory page 3.

Features:

- 3 Differential Sharc Link Port Emulation
- Access to 9x5 RF Gain Control Ports
- Access to 9x4 Temperature Sensor Ports
- 1 SFP Fiber Optic Transceiver for p-BPM Communication

5 Timing Specifications

5.1 Sharc IO-Pack:

Address-/Data

Address-decoding on the SHARC-IO Pack DSP VPII starts with a low level on /Piggi_CS. The IO-Pack logic asserts ACK high if:

- On write cycles, it has captured the data
- On read cycles, it has submitted stable data on the data bus.

It is necessary to deassert ACK as fast as possible after /RD or /WR are invalid. The logic waits for /RD and /WR inactive and terminates activity.

5.2 Sharc Link:

5.3 Sharc-IO Pack DSP-VPII To Transition Board TB-705A:

Address-decoding on the Transition Board starts with a low level on /WR or /RD. The Transition Board logic asserts ACK high if:

- On write cycles, it has captured the data
- On read cycles, it has submitted stable data on the data bus.

It is necessary to deassert ACK as fast as possible after /RD or /WR are invalid. The logic waits for /RD and /WR inactive and terminates activity.

6 Address Map

Sharc IO-Pack5: local address base (VME) 0x1400, Databus SD[31:16] mapped to VME D[15:0]
Sharc IO-Pack6: local address base (VME) 0x1800, Databus SD[31:16] mapped to VME D[15:0] (not used)
Page 0: Range 0x00...0x3E (address mapping towards DSP side):
Resolution: $\mathrm{DAC}_{\text {OUT }}=5 \mathrm{~V} /\left(2^{\wedge} 16\right) \approx 76 \mathrm{uV} /$ Bit

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0x00	[15:0]	W	RFO, DACO RF-Gain
0x01	[15:0]	W	RF0, DAC1 RF-Gain
0×02	[15:0]	W	RF0, DAC2 RF-Gain
0×03	[15:0]	W	RF0, DAC3 RF-Gain
0×04	[15:0]	W	RF0, DAC4 RF-Gain
0x05	[15:0]	W	RF1, DAC0 RF-Gain
0×06	[15:0]	W	RF1, DAC1 RF-Gain
0×07	[15:0]	W	RF1, DAC2 RF-Gain
0×08	[15:0]	W	RF1, DAC3 RF-Gain
0×09	[15:0]	W	RF1, DAC4 RF-Gain
0x0A	[15:0]	W	RF2, DAC0 RF-Gain
$0 \times 0 B$	[15:0]	W	RF2, DAC1 RF-Gain
0x0C	[15:0]	W	RF2, DAC2 RF-Gain
0x0D	[15:0]	W	RF2, DAC3 RF-Gain
Ox0E	[15:0]	W	RF2, DAC4 RF-Gain
0x0F	[15:0]	W	RF3, DAC0 RF-Gain
0×10	[15:0]	W	RF3, DAC1 RF-Gain
0×11	[15:0]	W	RF3, DAC2 RF-Gain
0×12	[15:0]	W	RF3, DAC3 RF-Gain
0×13	[15:0]	W	RF3, DAC4 RF-Gain
0×14	[15:0]	W	RF4, DAC0 RF-Gain
0×15	[15:0]	W	RF4, DAC1 RF-Gain
0×16	[15:0]	W	RF4, DAC2 RF-Gain
0×17	[15:0]	W	RF4, DAC3 RF-Gain
0×18	[15:0]	W	RF4, DAC4 RF-Gain
0×19	[15:0]	W	RF5, DAC0 RF-Gain
$0 \times 1 \mathrm{~A}$	[15:0]	W	RF5, DAC1 RF-Gain
0x1B	[15:0]	W	RF5, DAC2 RF-Gain
0x1C	[15:0]	W	RF5, DAC3 RF-Gain
0x1D	[15:0]	W	RF5, DAC4 RF-Gain
$0 \times 1 \mathrm{E}$	[15:0]	W	RF6, DAC0 RF-Gain
0x1F	[15:0]	W	RF6, DAC1 RF-Gain
0x20	[15:0]	W	RF6, DAC2 RF-Gain
0x21	[15:0]	W	RF6, DAC3 RF-Gain
0x22	[15:0]	W	RF6, DAC4 RF-Gain
0x23	[15:0]	W	RF7, DAC0 RF-Gain
0x24	[15:0]	W	RF7, DAC1 RF-Gain
0x25	[15:0]	W	RF7, DAC2 RF-Gain
0x26	[15:0]	W	RF7, DAC3 RF-Gain
0x27	[15:0]	W	RF7, DAC4 RF-Gain
0×28	[15:0]	W	RF8, DAC0 RF-Gain
0x29	[15:0]	W	RF8, DAC1 RF-Gain
0x2A	[15:0]	W	RF8, DAC2 RF-Gain
0x2B	[15:0]	W	RF8, DAC3 RF-Gain
0x2C	[15:0]	W	RF8, DAC4 RF-Gain
0x2D...0x3E	[15:0]		Not used

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0x00	[15:0]	R	RF(number of TB-705 slaves - 9), DAC0 RF-Gain
0×01	[15:0]	R	RF(number of TB-705 slaves - 9), DAC1 RF-Gain
0×02	[15:0]	R	RF(number of TB-705 slaves - 9), DAC2 RF-Gain
0×03	[15:0]	R	RF(number of TB-705 slaves - 9), DAC3 RF-Gain
0×04	[15:0]	R	RF(number of TB-705 slaves - 9), DAC4 RF-Gain
0×05	[15:0]	R	RF(number of TB-705 slaves - 8), DAC0 RF-Gain
0×06	[15:0]	R	RF(number of TB-705 slaves - 8), DAC1 RF-Gain
0×07	[15:0]	R	RF(number of TB-705 slaves - 8), DAC2 RF-Gain
0×08	[15:0]	R	RF(number of TB-705 slaves - 8), DAC3 RF-Gain
0×09	[15:0]	R	RF(number of TB-705 slaves - 8), DAC4 RF-Gain
$0 \times 0 \mathrm{~A}$	[15:0]	R	RF(number of TB-705 slaves - 7), DAC0 RF-Gain
$0 \times 0 \mathrm{~B}$	[15:0]	R	RF(number of TB-705 slaves - 7), DAC1 RF-Gain
$0 \times 0 \mathrm{C}$	[15:0]	R	RF(number of TB-705 slaves - 7), DAC2 RF-Gain
0x0D	[15:0]	R	RF(number of TB-705 slaves - 7), DAC3 RF-Gain
0x0E	[15:0]	R	RF(number of TB-705 slaves - 7), DAC4 RF-Gain
0x0F	[15:0]	R	RF(number of TB-705 slaves - 6), DAC0 RF-Gain
0×10	[15:0]	R	RF(number of TB-705 slaves - 6), DAC1 RF-Gain
0×11	[15:0]	R	RF(number of TB-705 slaves - 6), DAC2 RF-Gain
0×12	[15:0]	R	RF(number of TB-705 slaves - 6), DAC3 RF-Gain
0×13	[15:0]	R	RF(number of TB-705 slaves - 6), DAC4 RF-Gain
0x14	[15:0]	R	RF(number of TB-705 slaves - 5), DAC0 RF-Gain
0×15	[15:0]	R	RF(number of TB-705 slaves - 5), DAC1 RF-Gain
0×16	[15:0]	R	RF(number of TB-705 slaves - 5), DAC2 RF-Gain
0×17	[15:0]	R	RF(number of TB-705 slaves - 5), DAC3 RF-Gain
0×18	[15:0]	R	RF(number of TB-705 slaves - 5), DAC4 RF-Gain
0×19	[15:0]	R	RF(number of TB-705 slaves - 4), DAC0 RF-Gain
$0 \times 1 \mathrm{~A}$	[15:0]	R	RF(number of TB-705 slaves - 4), DAC1 RF-Gain
$0 \times 1 \mathrm{~B}$	[15:0]	R	RF(number of TB-705 slaves - 4), DAC2 RF-Gain
$0 \times 1 \mathrm{C}$	[15:0]	R	RF(number of TB-705 slaves - 4), DAC3 RF-Gain
$0 \times 1 \mathrm{D}$	[15:0]	R	RF(number of TB-705 slaves - 4), DAC4 RF-Gain
$0 \times 1 \mathrm{E}$	[15:0]	R	RF(number of TB-705 slaves - 3), DAC0 RF-Gain
$0 \times 1 \mathrm{~F}$	[15:0]	R	RF(number of TB-705 slaves - 3), DAC1 RF-Gain
0x20	[15:0]	R	RF(number of TB-705 slaves - 3), DAC2 RF-Gain
0×21	[15:0]	R	RF(number of TB-705 slaves - 3), DAC3 RF-Gain
0×22	[15:0]	R	RF(number of TB-705 slaves - 3), DAC4 RF-Gain
0×23	[15:0]	R	RF(number of TB-705 slaves - 2), DAC0 RF-Gain
0×24	[15:0]	R	RF(number of TB-705 slaves - 2), DAC1 RF-Gain
0x25	[15:0]	R	RF(number of TB-705 slaves - 2), DAC2 RF-Gain
0×26	[15:0]	R	RF(number of TB-705 slaves - 2), DAC3 RF-Gain
0×27	[15:0]	R	RF(number of TB-705 slaves - 2), DAC4 RF-Gain
0×28	[15:0]	R	RF(number of TB-705 slaves - 1), DAC0 RF-Gain
0x29	[15:0]	R	RF(number of TB-705 slaves - 1), DAC1 RF-Gain
$0 \times 2 \mathrm{~A}$	[15:0]	R	RF(number of TB-705 slaves - 1), DAC2 RF-Gain
$0 \times 2 \mathrm{~B}$	[15:0]	R	RF(number of TB-705 slaves - 1), DAC3 RF-Gain
$0 \times 2 \mathrm{C}$	[15:0]	R	RF(number of TB-705 slaves - 1), DAC4 RF-Gain
0x2D...0x3E	[15:0]		Not used

Please note: The data read is not necessarily the data written to this DAC but the data acknowledged by the corresponding TB-705 slave. The data position has an offset depending on how many TB-705 slaves are in the daisy chain.

Page 1: Range 0x00...0x3E (address mapping towards DSP side):
The temperature provided to the DSP is the value read from the LM-92 chip. This means it is 16 bit wide containing:

- bit 0 : low temperature flag $\left(<10^{\circ} \mathrm{C}\right)$,
- bit 1: high temperature flag $\left(>64^{\circ} \mathrm{C}\right)$,
- bit 2: critical temperature flag $\left(>80^{\circ} \mathrm{C}\right)$,
- bits $14-3$: the temperature in $0.0625^{\circ} \mathrm{C}$ steps and
- bit 15: the sign bit of the temperature.

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0x00	[15:0]	R	RF(number of TB-705 slaves - 9), Temp Sensor 0
0×01	[15:0]	R	RF(number of TB-705 slaves - 9), Temp Sensor 1
0×02	[15:0]	R	RF(number of TB-705 slaves - 9), Temp Sensor 2
0×03	[15:0]	R	RF(number of TB-705 slaves - 9), Temp Sensor 3
0×04	[15:0]	R	RF(number of TB-705 slaves - 8), Temp Sensor 0
0×05	[15:0]	R	RF(number of TB-705 slaves - 8), Temp Sensor 1
0×06	[15:0]	R	RF(number of TB-705 slaves - 8), Temp Sensor 2
0×07	[15:0]	R	RF(number of TB-705 slaves - 8), Temp Sensor 3
0x08	[15:0]	R	RF(number of TB-705 slaves - 7), Temp Sensor 0
0x09	[15:0]	R	RF(number of TB-705 slaves - 7), Temp Sensor 1
$0 \times 0 \mathrm{~A}$	[15:0]	R	RF(number of TB-705 slaves - 7), Temp Sensor 2
0x0B	[15:0]	R	RF(number of TB-705 slaves - 7), Temp Sensor 3
0x0C	[15:0]	R	RF(number of TB-705 slaves - 6), Temp Sensor 0
0x0D	[15:0]	R	RF(number of TB-705 slaves - 6), Temp Sensor 1
0x0E	[15:0]	R	RF(number of TB-705 slaves - 6),Temp Sensor 2
0x0F	[15:0]	R	RF(number of TB-705 slaves - 6), Temp Sensor 3
0×10	[15:0]	R	RF(number of TB-705 slaves - 5), Temp Sensor 0
0×11	[15:0]	R	RF(number of TB-705 slaves - 5), Temp Sensor 1
0×12	[15:0]	R	RF(number of TB-705 slaves - 5), Temp Sensor 2
0×13	[15:0]	R	RF(number of TB-705 slaves - 5), Temp Sensor 3
0x14	[15:0]	R	RF(number of TB-705 slaves - 4), Temp Sensor 0
0×15	[15:0]	R	RF(number of TB-705 slaves - 4), Temp Sensor 1
0×16	[15:0]	R	RF(number of TB-705 slaves - 4), Temp Sensor 2
0×17	[15:0]	R	RF(number of TB-705 slaves - 4), Temp Sensor 3
0×18	[15:0]	R	RF(number of TB-705 slaves - 3), Temp Sensor 0
0x19	[15:0]	R	RF(number of TB-705 slaves - 3), Temp Sensor 1
$0 \times 1 \mathrm{~A}$	[15:0]	R	RF(number of TB-705 slaves - 3), Temp Sensor 2
0x1B	[15:0]	R	RF(number of TB-705 slaves - 3), Temp Sensor 3
$0 \times 1 \mathrm{C}$	[15:0]	R	RF(number of TB-705 slaves - 2), Temp Sensor 0
0x1D	[15:0]	R	RF(number of TB-705 slaves - 2), Temp Sensor 1
$0 \times 1 \mathrm{E}$	[15:0]	R	RF(number of TB-705 slaves - 2), Temp Sensor 2
0x1F	[15:0]	R	RF(number of TB-705 slaves - 2), Temp Sensor 3
0x20	[15:0]	R	RF(number of TB-705 slaves - 1), Temp Sensor 0
0×21	[15:0]	R	RF(number of TB-705 slaves - 1), Temp Sensor 1
0×22	[15:0]	R	RF(number of TB-705 slaves - 1), Temp Sensor 2
0×23	[15:0]	R	RF(number of TB-705 slaves - 1), Temp Sensor 3
0x24...0x3E	[15:0]		Not used

Please note: The data position has an offset depending on how many TB-705 slaves are in the daisy chain.

Page 2: (address mapping towards DSP side):

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0×00	$[15: 0]$	R	Link Buffer FIFO 0 Low Word
0×01	$[15: 0]$	R	Link Buffer FIFO 0 High Word
0×02	$[15: 0]$	R	Link Buffer FIFO 1 Low Word
0×03	$[15: 0]$	R	Link Buffer FIFO 1 High Word
0×04	$[15: 0]$	R	Link Buffer FIFO 2 Low Word
0×05	$[15: 0]$	R	Link Buffer FIFO 2 High Word
0×06	$[15: 0]$	R / W	Link Buffer Control Register (LCTL)
0×07	$[15: 0]$	R / W	Link Common Control Register (LCOM)
$0 \times 08.0 \times 3 \mathrm{E}$			not used

Page 3: (address mapping towards DSP side):

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0×00	$[15: 0]$	R	X pBPM 0 Low Word
0×01	$[15: 0]$	R	X pBPM 0 High Word
0×02	$[15: 0]$	R	Y pBPM 0 Low Word
0×03	$[15: 0]$	R	Y pBPM 0 High Word
0×04	$[15: 0]$	R	Intensity pBPM 0 Low Word
0×05	$[15: 0]$	R	Intensity pBPM 0 High Word
0×06	$[15: 0]$	R	Status pBPM 0
0×07	$[15: 0]$	R	Event Counter pBPM 0
0×08	$[15: 0]$	R	X pBPM 1 Low Word
0×09	$[15: 0]$	R	X pBPM 1 High Word
$0 \times 0 \mathrm{~A}$	$[15: 0]$	R	Y pBPM 1 Low Word
$0 \times 0 \mathrm{~B}$	$[15: 0]$	R	Y pBPM 1 High Word
$0 \times 0 \mathrm{C}$	$[15: 0]$	R	Intensity pBPM 1 Low Word
$0 \times 0 \mathrm{D}$	$[15: 0]$	R	Intensity pBPM 1 High Word
$0 \times 0 \mathrm{E}$	$[15: 0]$	R	Status pBPM 1
$0 \times 0 \mathrm{~F}$	$[15: 0]$	R	Event Counter pBPM 1
0×10	$[15: 0]$	R	X pBPM 2 Low Word
0×11	$[15: 0]$	R	X pBPM 2 High Word
0×12	$[15: 0]$	R	Y pBPM 2 Low Word
0×13	$[15: 0]$	R	Y pBPM 2 High Word
0×14	$[15: 0]$	R	Intensity pBPM 2 Low Word
0×15	$[15: 0]$	R	Intensity pBPM 2 High Word
0×16	$[15: 0]$	R	Status pBPM 2
0×17	$[15: 0]$	R	Event Counter pBPM 2
0×18	$[15: 0]$	R	X pBPM 3 Low Word
0×19	$[15: 0]$	R	X pBPM 3 High Word
$0 \times 1 \mathrm{~A}$	$[15: 0]$	R	Y pBPM 3 Low Word
$0 \times 1 \mathrm{~B}$	$[15: 0]$	R	Y pBPM 3 High Word
$0 \times 1 \mathrm{C}$	$[15: 0]$	R	Intensity pBPM 3 Low Word
$0 \times 1 \mathrm{D}$	$[15: 0]$	R	Intensity pBPM 3 High Word
$0 \times 1 \mathrm{E}$	$[15: 0]$	R	Status pBPM 3
$0 \times 1 \mathrm{~F}$	$[15: 0]$	R	Event Counter pBPM 3
$0 \times 20 . .0 \times 3 \mathrm{E}$			not used

Page 4: Range 0x00...0x3E (address mapping towards DSP side):

Offset (Hex)	Bit [MSB-LSB]	Read/Write	Description
0×00	$[15: 0]$	R	Free running counter with a resolution of 12.5 ns
0×01	$[15: 0]$	R/W	Link error counter.
$0 \times 02 \ldots 03 E$	$[15: 0]$		Writing to this address resets the counter to 0.

Page 5..7: not used

7 Registers

7.1 Page-Select-Register at location (0x3F):

Bit 2,1,0	Definition
0×0	Map Memory Page 0
0×1	Map Memory Page 1
0×2	Map Memory Page 2
0×3	Map Memory Page 3
0×4	Map Memory Page 4
0×5	Map Memory Page 5
0×6	Map Memory Page 6
0×7	Map Memory Page 7

7.2 Link Buffer FIFOx
 Location : 0x00..0x14, Page2

In general, after reading a FIFO, the FIFO is shifted and the new value is present at the FIFO output. Here, this is true only for the low word register of the Link Buffer FIFO. So when reading the FIFO, start with the high word register first and then continue with the low word register. After reading the low word register, both high and low registers are shifted.

7.3 Link Buffer Control Register LCTL Location : 0x18, Page2

Bit \#	Name	Function
$0 . .3$	$*$	Link Buffer 0 Control
$4 . .7$	$*$	Link Buffer 1 Control
$8 . .11$	$*$	Link Buffer 2 Control
12.15	$*$	reserved

Table 7.3: Link Control Register (LCTL)

* Each four-bit group includes the following control bits for each link buffer. (x=0,1,2)

Bit \#	Name	Definition
$0+4 x$	LxEN	LBUFx enable
$1+4 x$	LxTRAN	LBUFx direction: $1=$ transmit, $0=$ receive
$2+4 x$	LEXTx	Extended Word size: $1=48$ bit transfers, $0=32$ bit transfers
$1+4 x$	$*$	reserved

LCTL Control Bits:

LxEN Enables a link buffer. As a buffer is disabled (LxEN transition from high to low), the LxSTAT and LRERR bits are cleared. When its buffer is disabled, an assigned link port stops receiving (driving LxACK) or transmitting (driving LxCLK). To pull the LxACK and LxCLK signals low, enable the pull down resistors with the LCOM register.

LxTRAN Gives the direction of the link buffer and link port: 0 to receive link data, 1 to transmit link data
LEXTx Gives the size of the link buffer, link port and data transfer through the Link port: $1=48$ bit transfer, $0=32$ bit transfer

7.4 Link Common Control Register LCOM

Location : 0x1C, Page2

Bit \#	Name	Function
$[0 . .1]$	LOSTAT(0:1)	Link Buffer 0 status: $11=$ full, $00=$ empty, $10=$ one word *
$[2 . .3]$	L1STAT(0:1)	Link Buffer 1 status: 11 = full, $00=$ empty, 10 = one word *
$[4 . .5]$	L2STAT(0:1)	Link Buffer 2 status: 11 = full, $00=$ empty, 10 = one word *
6	LCLKX20	Transfer data at 2x the clock rate on Link Buffer 0
7	LCLKX21	Transfer data at 2x the clock rate on Link Buffer 1
8	LCLKX22	Transfer data at 2x the clock rate on Link Buffer 2
9	LRERR0	Receive pack error status for Link Buffer 0
10	LRERR1	Receive pack error status for Link Buffer 1
11	LRERR2	Receive pack error status for Link Buffer 2
$[12 . .15]$	reserved	

Table 7.4: Common Control Register (LCOM)

* The code 01 does not appear as a valid status

LCOM Control Bits:

$\operatorname{LxSTAT}(0: 1) \quad$ When transmitting, these status bits indicate whether there is room in the buffer for more data. When receiving, these status bits indicate whether new (unread) data is available in the receive buffer.
$\operatorname{LxSTAT}(1)=1$ if there is data in the buffer. $\operatorname{LxSTAT}(0)=0$ if there is room in the buffer. These bits are read-only. They are cleared when LxEN changes from 1 to 0 . They may subsequently change state when the data buffer is read or written.

LCLKX2x This specifies link buffers to transfer at twice the ADSP-2106x clock frequency, and receive transfers occur at (up to) the ADSP-2106x clock frequency

LRERRx These bits reflects the status of the receive nibble packer for each link buffer. LRERRx will equal 0 when the nibble packer is set to start receiving a new word. Otherwise it will be 1. If this bit is equal to 1 after a word is received, then an error has occurred (e.g. clock glitch). The LRERRx bits are cleared when LxEN changes from 1 to 0 . They may subsequently change state when the link buffer is read or written or while a word is being received.

7.5 pBPM Register

Location : 0x00..0xF8, Page3
These memory locations are predefined and reserved for later use.

8 Connector Pin Specifications

8.1 Connector SharcLink Port J1:

This connector is a modified 2 mm Z-Pack system. Each Link channel use 12 differential plus 3 shielded pins. Each differential pair has its own cable shield.

8.2 SFP Optical Transceiver Port:

This port is equipped with a HFBR 5720AL module. It is connected to the Virtex II Pro Multi Gigabit Transceiver Port 6. Its transfer rate is either 1062.5 MHz or 2125 MHz . Clock base is 106.25 MHz .

8.3Connector VME P2 Rear:

Pin	Name	Definition	1/0	Pin	Name	Definition	I/O
1A	Spare C	not used		1 C	Spare A	not used	
2A	Spare D	not used		2 C	Spare B	not used	
3A	TB-D0		1/O	3C	TB-A0	Transition Board Addressbus	0
4A	TB-D1	"	1/O	4C	TB-A1		0
5A	TB-D2	"	1/O	5C	TB-A2	"	0
6A	TB-D3	"	1/O	6C	TB-A3		0
7A	TB-D4	"	1/O	7C	TB-A4		0
8A	TB-D5	"	I/O	8C	TB-A5	"	0
9A	TB-D6	"	1/O	9C	TB-A6		0
10A	TB-D7	"	1/O	10C	TB-A7	"	0
11A	TB-D8	"	1/O	11C	TB-A8		0
12A	TB-D9	"	1/O	12C	TB-RDn	Read Strobe	0
13A	TB-D10	"	1/O	13C	TB-WRn	Write Strobe	0
14A	TB-D11	"	1/O	14C	TB-ACK	Acknowledge	1
15A	TB-D12	"	I/O	15C	TB-TRIG A	TB-Trigger Bus A for Sharc I/O-Pack	I/O
16A	TB-D13	"	I/O	16C	TB-TRIG B	TB-Trigger Bus B for Sharc I/O-Pack	I/O
17A	TB-D14	"	I/O	17C	TB-TRIG C	TB-Trigger Bus C for Sharc I/O-Pack	I/O
18A	DSP_SCLK	Sharc-Bus Clock 40 MHz	I/O	18C			
19A				19C			
20A				20C			
21A				21C			
22A	TB-D15	Transition Board Databus		22C	TB-A9	Transition Board Addressbus	
23A	Spare 2	not used		23C	Spare 4	not used	0
24A				24C			
25A				25C			
26A				26C			
27A				27C			
28A				28C			
29A				29C			
30A				30C			
31 A				31 C			

8.4 Connector Mezzanine J8 Sharc IO-Pack 5 Rear:

Pin-Nr.	Signal	Description	Pin	Signal	Description
1	SAO	SHARC address bus (VME:A2)	2	SA3	SHARC address bus (VME:A5)
3	SA1	SHARC address bus (VME:A5)	4	SA4	SHARC address bus (VME:A6)
5	SA2	SHARC address bus (VME:A4)	6	SA5	SHARC address bus (VME:A7)
	DGND		8	+5VD	
13	DGND		10	DGND	
15	SD17	SHARC data bus (VME:D1)	14	ACK	Memory Acknowledge
17	SD16	SHARC data bus (VME:D0)	18	DGND	
29	+5VD		22	PIGGY_CS 5	SHARC I/O-Pack Chipselect
31	/RD	Memory Read Strobe	30	SD18	SHARC data bus (VME:D2)
43	SD20	SHARC data bus (VME:D4)	34	/WR	Memory Write Strobe
45	SD30	SHARC data bus (VME:D14)	40	SCLK	System Clock (40MHz)
47	SD28	SHARC data bus (VME:D12)	46	SD31	SHARC data bus (VME:D15)
49	SD26	SHARC data bus (VME:D10)	48	SD29	SHARC data bus (VME:D13)
51	SD24	SHARC data bus (VME:D8)	50	SD27	SHARC data bus (VME:D11)
55	SD22	SHARC data bus (VME:D6)	52	SD25	SHARC data bus (VME:D9)
57	SD21	SHARC data bus (VME:D5)	54	SD23	SHARC data bus (VME:D7)
59	SD19	SHARC data bus (VME:D3)			

8.5 Connector Mezzanine J9 Sharc IO-Pack 6 Rear:

Pin-Nr.	Signal	Description	Pin	Signal	Description
9	DGND				
13	DGND		$+5 V D$		
29	$+5 V D$		10	DGND	
18	DGND				
22	PIGGY_CS 6	SHARC I/O-Pack Chipselect			

8.6 Connector Mezzanine J10 Sharc IO-Pack 6 Front:

Pin-Nr.	Signal	Description	Pin	Signal	Description
9	/RST	Board Hardware Reset	2	TRIGC	Trigger Bus C for SHARC I/O-Pack
15	DGND		4	DGND	
23	DGND		48	DGND	
31	DGND		62	DGND	
47	DGND		64	TRIGA	Trigger Bus A for SHARC I/O-Pack
63	TRIGB	Trigger Bus B for SHARC I/O-Pack			

9 Switches

SW-1 not used
SW-2 not used
SW-3 not used
SW-4 not used
SW-5 not used
SW-6 not used
SW-7 not used
SW-8 not used

10 LEDs

LED 4 G not used
LED 4 R not used
LED 3 G not used LED 3 R not used LED 2 G not used LED 2 R not used LED 1 G not used LED 1 R FPGA programmed

11 Power Requirements

Approx 0.9 A at +5 V

